Model Design
We used a Quantile Regression model to explore the relationship between the dependent variable 'rate_log' and independent variables represented by principal components (pca0 through pca44). Quantile Regression allows us to examine the impact of these independent variables at different quantiles of the dependent variable's distribution, providing a more comprehensive understanding of the relationships.
Methodology
We employed Quantile Regression using the Least Squares method on a dataset with 586,095 observations. The model's performance was evaluated using the pseudo R-squared value.
In conclusion, this Quantile Regression model demonstrates various relationships between the rate_log and the principal components used as independent variables. Many of these principal components have a statistically significant impact on rate_log, while a few do not show a significant relationship.
Results Summary
Pseudo R-squared: Our model explains approximately 16.76% of the variability in the dependent variable 'rate_log' as indicated by the pseudo R-squared value of 0.1676.
Coefficients: The coefficients (coef) represent the change in rate_log for a one-unit increase in the corresponding principal component while holding all other principal components constant. The model includes 45 principal components as independent variables. Some coefficients have a positive relationship with rate_log, while others have a negative relationship. This suggests that different principal components have varying effects on the dependent variable, rate_log.
Statistical Significance: Statistical significance is assessed using the p-values (P>|t|) for each principal component. Most of the principal components show a statistically significant relationship with the rate_log, as their p-values are less than 0.05. However, there are a few exceptions: pca7 (p=0.215) and pca24 (p=0.732), which do not exhibit a statistically significant relationship with the dependent variable, rate_log.
Coefficients Table
QuantReg Regression Results ============================================================================== Dep. Variable: rate_log Pseudo R-squared: 0.1676 Model: QuantReg Bandwidth: 0.06131 Method: Least Squares Sparsity: 3.650 Date: Wed, 19 Apr 2023 No. Observations: 586095 Time: 15:42:07 Df Residuals: 586049 Df Model: 45 ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ const 7.0413 0.002 3410.821 0.000 7.037 7.045 pca0 0.0254 0.001 39.592 0.000 0.024 0.027 pca1 -0.0122 0.001 -13.963 0.000 -0.014 -0.011 pca2 -0.1010 0.001 -104.836 0.000 -0.103 -0.099 pca3 0.0379 0.001 32.552 0.000 0.036 0.040 pca4 0.0459 0.001 36.850 0.000 0.043 0.048 pca5 -0.0040 0.001 -2.995 0.003 -0.007 -0.001 pca6 0.0323 0.001 24.266 0.000 0.030 0.035 pca7 -0.0017 0.001 -1.241 0.215 -0.004 0.001 pca8 0.1054 0.001 70.355 0.000 0.102 0.108 pca9 -0.0107 0.001 -7.426 0.000 -0.014 -0.008 pca10 0.0657 0.002 42.974 0.000 0.063 0.069 pca11 -0.0995 0.002 -64.663 0.000 -0.103 -0.096 pca12 0.0780 0.002 49.256 0.000 0.075 0.081 pca13 -0.0730 0.002 -44.422 0.000 -0.076 -0.070 pca14 -0.0976 0.002 -57.408 0.000 -0.101 -0.094 pca15 0.0418 0.002 23.280 0.000 0.038 0.045 pca16 -0.0808 0.002 -46.741 0.000 -0.084 -0.077 pca17 -0.0612 0.002 -34.441 0.000 -0.065 -0.058 pca18 0.0738 0.002 42.169 0.000 0.070 0.077 pca19 -0.1477 0.002 -84.887 0.000 -0.151 -0.144 pca20 0.0287 0.002 16.043 0.000 0.025 0.032 pca21 0.0910 0.002 52.688 0.000 0.088 0.094 pca22 -0.0616 0.002 -34.849 0.000 -0.065 -0.058 pca23 -0.0663 0.002 -35.591 0.000 -0.070 -0.063 pca24 -0.0006 0.002 -0.342 0.732 -0.004 0.003 pca25 -0.1712 0.002 -88.744 0.000 -0.175 -0.167 pca26 0.0786 0.002 43.153 0.000 0.075 0.082 pca27 -0.0537 0.002 -29.857 0.000 -0.057 -0.050 pca28 0.1190 0.002 61.396 0.000 0.115 0.123 pca29 0.0460 0.002 23.522 0.000 0.042 0.050 pca30 0.1588 0.002 86.822 0.000 0.155 0.162 pca31 0.1207 0.002 62.591 0.000 0.117 0.125 pca32 0.2390 0.002 123.489 0.000 0.235 0.243 pca33 0.0216 0.002 11.081 0.000 0.018 0.025 pca34 0.1053 0.002 54.100 0.000 0.101 0.109 pca35 0.2268 0.002 120.584 0.000 0.223 0.230 pca36 -0.1766 0.002 -92.504 0.000 -0.180 -0.173 pca37 0.0791 0.002 40.369 0.000 0.075 0.083 pca38 -0.1473 0.002 -73.149 0.000 -0.151 -0.143 pca39 -0.0901 0.002 -46.953 0.000 -0.094 -0.086 pca40 -0.2922 0.002 -150.323 0.000 -0.296 -0.288 pca41 -0.0763 0.002 -41.556 0.000 -0.080 -0.073 pca42 -0.2067 0.002 -102.645 0.000 -0.211 -0.203 pca43 -0.0766 0.002 -37.745 0.000 -0.081 -0.073 pca44 -0.1364 0.002 -73.916 0.000 -0.140 -0.133 ==============================================================================